Similarity measures in fuzzy rule base simplification
نویسندگان
چکیده
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzzy sets are merged to create a common fuzzy set to replace them in the rule base. If the redundancy in the model is high, merging similar fuzzy sets might result in equal rules that also can be merged, thereby reducing the number of rules as well. The simplified rule base is computationally more efficient and linguistically more tractable. The approach has been successfully applied to fuzzy models of real world systems.
منابع مشابه
Rule base simplification by using a similarity measure of fuzzy sets
In fuzzy models, redundancy may be present in the form of similar fuzzy sets, especially in the construction of a fuzzy system from a set of given training examples. In this paper, a simple formula for calculating the degree of similarity of Trapezoidal membership functions is derived in order to merge similar membership functions and hence to obtain a more transparent rule-base with a minimum ...
متن کاملRule-base self-generation and simplification for data-driven fuzzy models
Data-driven fuzzy modeling has been used in a wide variety of applications. However, in fuzzy rule-based models acquired from numerical data, redundancy often exists in the form of redundant rules or similar fuzzy sets. This results in unnecessary structural complexity and decreases the interpretability of the system. In this paper, a rule-base self-extraction and simpli&cation method is propos...
متن کاملDistance based similarity measures of fuzzy sets
In case of fuzzy reasoning in sparse fuzzy rule bases, the question of selecting the suitable fuzzy similarity measure is essential. The rule antecedents of the sparse fuzzy rule bases are not fully covering the input universe therefore fuzzy reasoning methods applied for sparse fuzzy rule bases requires similarity measures able to distinguish the similarity of non-overlapping fuzzy sets, too. ...
متن کاملRule model simplification
Due to its high performance and comprehensibility, fuzzy modelling is becoming more and more popular in dealing with nonlinear, uncertain and complex systems for tasks such as signal processing, medical diagnosis and financial investment. However, there are no principal routine methods to obtain the optimum fuzzy rule base which is not only compact but also retains high prediction (or classific...
متن کاملRule base simplification in fuzzy systems by aggregation of inconsistent rules
This paper proposes a rule base simplification method for fuzzy systems. The method is based on aggregation of rules with different linguistic values of the output for identical permutations of linguistic values of the inputs which are known as inconsistent rules. The simplification removes the redundancy in the fuzzy rule base by replacing each group of inconsistent rules with a single equival...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 28 3 شماره
صفحات -
تاریخ انتشار 1998